Cổng Thông Tin Đại Học, Cao Đẳng Lớn Nhất Việt Nam

Hình bình hành là gì? Xem xong 5 phút hiểu luôn.

KHOA Y DƯỢC HÀ NỘI

Thẳng tiến vào đại học chỉ với: Điểm lớp 12 Từ 6,5 Điểm thi từ 18

  • Để đảm bảo chất lượng học và dạy cũng như chất lượng đầu ra cho sinh viên, năm 2021 Khoa nhận đào tạo 200 sinh viên đối với ngành Đại Học Điều DưỡngDược tuyển sinh theo hình thức xét tuyển.
  • HOẶC NỘP HỒ SƠ TRỰC TUYẾN TẠI ĐÂY >>>  CLICK VÀO ĐÂY 
Hình bình hành là một hình học hai chiều, có các cạnh song song với nhau. Nó là một loại đa giác có bốn cạnh (còn gọi là tứ giác), trong đó các cặp cạnh song song có độ dài bằng nhau. Ngoài ra, các góc đối diện trong của một hình bình hành có số đo bằng nhau. Tổng các góc kề của một hình bình hành bằng 180 độ.

Sự thật:

  • Số cạnh = 4
  • Số đỉnh = 4
  • Các cạnh song song lẫn nhau = 2 (theo cặp)
  • Diện tích = Cơ sở x Chiều cao
  • Chu vi = 2 (Tổng chiều dài các cạnh liền kề)
  • Loại đa giác = Tứ giác

Hình dạng ba chiều có các mặt của nó là hình bình hành, được gọi là hình bình hành. Các diện tích hình bình hành phụ thuộc vào cơ sở (một trong hai bên song song của nó) và chiều cao (độ cao lấy từ trên xuống dưới) của nó. Chu vi hình bình hành phụ thuộc vào độ dài bốn cạnh của nó.

Trong hình học, chắc hẳn bạn đã học về nhiều hình dạng và kích thước 2D như hình tròn, hình vuông, hình chữ nhật, hình thoi, … Tất cả các hình dạng này đều có một tập hợp các tính chất khác nhau. Ngoài ra, các công thức về diện tích và chu vi của các hình này khác nhau và được sử dụng để giải nhiều bài toán. Sau đây chúng ta cùng tìm hiểu định nghĩa, công thức và tính chất của hình bình hành.

Biến thể nghịch đảo 

Định nghĩa Hình bình hành

Hình bình hành là tứ giác có hai cặp cạnh đối song song. Các cạnh đối diện của hình bình hành có độ dài bằng nhau và số đo các góc đối diện bằng nhau. Ngoài ra, các góc nội thất ở cùng một bên của ngang cũng được bổ sung. Tổng của tất cả các góc bên trong bằng 360 độ.

Hình vuông và hình chữ nhật là hai hình có tính chất giống hình bình hành.

Hình thoi: Nếu tất cả các cạnh của hình bình hành bằng nhau hoặc bằng nhau thì đó là hình thoi.

Nếu có một cạnh bên song song và hai cạnh còn lại không song song thì đó là hình thang.

Xem hình bên dưới:

Hình bình hành 1

Trong hình trên, bạn có thể thấy, ABCD là hình bình hành, trong đó AB || CD và AD || BC.

Ngoài ra, AB = CD và AD = BC

Và,  ∠A = ∠C & ∠B = ∠D

Ngoài ra, ∠A & ∠D là các góc bổ sung vì các góc bên trong này nằm trên cùng một phía của đường ngang. Theo cách tương tự, ∠B & ∠C là các góc phụ nhau.

Vì thế,

∠A + ∠D = 180

∠B + ∠C = 180

Hình dạng của Hình bình hành

Hình bình hành là một hình hai chiều. Nó có bốn cạnh, trong đó hai cặp cạnh song song. Ngoài ra, các cạnh song song có độ dài bằng nhau.

Nếu độ dài các cạnh của hình bình hành không bằng số đo thì hình đó không phải là hình bình hành. Tương tự, các góc đối diện của hình bình hành phải luôn bằng nhau. Nếu không, nó không phải là một hình bình hành.

Hình bình hành đặc biệt

Hình vuông và hình chữ nhật: Hình vuông và hình chữ nhật là hai hình có các tính chất giống nhau của hình bình hành. Cả hai đều có các cạnh đối diện của chúng bằng nhau và song song với nhau. Các đường chéo của cả hai hình phân giác nhau.

Hình thoi: Nếu tất cả các cạnh của hình bình hành bằng nhau hoặc bằng nhau thì đó là hình thoi.

Hình thoi: Là trường hợp đặc biệt của hình bình hành có các cạnh đối diện song song với nhau nhưng các cạnh kề nhau có độ dài không bằng nhau. Ngoài ra, các góc bằng 90 độ.

Hình thang: Nếu có một cạnh song song và hai cạnh còn lại không song song thì đó là hình thang.

Góc của Hình bình hành

Hình bình hành là một hình phẳng 2d có bốn góc. Các góc nội thất đối diện bằng nhau. Các góc ở cùng một phía của đường ngang là bổ sung, có nghĩa là chúng cộng lại tới 180 độ. Do đó, tổng các góc trong của một hình bình hành là 360 độ.

Tính chất của Hình bình hành

Nếu một tứ giác có một cặp cạnh đối diện song song thì đó là một đa giác đặc biệt được gọi là Hình bình hành. Các tính chất của hình bình hành như sau:

  • Các cạnh đối diện song song và đồng dư
  • Các góc đối diện là đồng dư
  • Các góc liên tiếp là phụ nhau
  • Nếu một góc bất kỳ là góc vuông thì tất cả các góc còn lại sẽ là góc vuông
  • Hai đường chéo phân giác nhau
  • Mỗi đường chéo chia đôi hình bình hành thành hai tam giác đồng dạng
  • Tổng bình phương tất cả các cạnh của hình bình hành bằng tổng bình phương các đường chéo của nó. Nó còn được gọi là luật hình bình hành

Công thức (Diện tích & Chu vi)

Công thức về diện tích và chu vi của một hình bình hành được đề cập ở đây trong phần này. Học sinh có thể sử dụng các công thức này và giải quyết vấn đề dựa trên chúng.

Diện tích hình bình hành

Diện tích của một hình bình hành là vùng chiếm bởi nó trong một mặt phẳng hai chiều. Dưới đây là công thức tính diện tích hình bình hành:

Diện tích = Cơ sở × Chiều cao

Hình bình hành 2

Trong hình trên, || gam ABCD, Diện tích được cho bởi;

Diện tích = ab sin A = ba sin B

trong đó a là độ dài nghiêng của cạnh || gam ABCD và b là cơ sở.

Chu vi của Hình bình hành

Chu vi của bất kỳ hình dạng nào là tổng khoảng cách bao quanh hình dạng đó hoặc tổng chiều dài của bất kỳ hình dạng nào. Tương tự,  chu vi của một hình bình hành  là tổng khoảng cách của các đường biên của hình bình hành. Để tính toán giá trị chu vi, chúng ta phải biết các giá trị của chiều dài và chiều rộng của nó. Hình bình hành có độ dài các cạnh đối diện bằng nhau. Do đó, công thức tính chu vi được viết là;

Chu vi = 2 (a + b) đơn vị 

Trong đó a và b là độ dài các cạnh của hình bình hành.

Các loại hình bình hành

Có chủ yếu là bốn loại hình bình hành, tùy thuộc vào các yếu tố khác nhau. Các yếu tố phân biệt tất cả các loại hình bình hành này là góc, cạnh, v.v.

  1. Trong một hình bình hành, giả sử PQRS
    • Nếu PQ = QR = RS = SP là các cạnh bằng nhau thì đó là hình thoi. Tất cả các thuộc tính giống nhau đối với hình thoi cũng như đối với hình bình hành.
  2. Hai dạng đặc biệt khác của hình bình hành là:
    • Hình chữ nhật
    • Quảng trường

Hình vuông có phải là Hình bình hành không?

Hình vuông có thể được coi là một hình bình hành vì các cạnh đối diện song song với nhau và các đường chéo của hình vuông chia đôi nhau.

Hình chữ nhật có phải là Hình bình hành không?

Đúng, một hình chữ nhật cũng là một hình bình hành, vì nó thỏa mãn các điều kiện hoặc thỏa mãn các tính chất của hình bình hành như các cạnh đối diện là song song và các đường chéo phân giác nhau.

Định lý Hình bình hành

Định lý 1:  Các hình bình hành cùng đáy và giữa các cạnh đối song song có diện tích bằng nhau.

Chứng minh:  Hai hình bình hành ABCD và ABEF, trên cùng một đáy DC và nằm giữa hai đường thẳng song song AB và FC.

Để chứng minh rằng diện tích (ABCD) = diện tích (ABEF).

Bằng chứng:

Xét hình bên: Hình bình hành
ABCD và hình chữ nhật ABML nằm trên cùng một đáy và nằm giữa hai cạnh AB và LC.

diện tích hình bình hành ABCD = diện tích hình bình hành ABML

Chúng ta biết rằng diện tích hình chữ nhật = chiều dài x chiều rộng.

Do đó, diện tích hình bình hành ABCD = AB x AL
Do đó, diện tích hình bình hành là tích của bất kỳ đáy nào của nó và đường cao tương ứng.

Hình bình hành 3

Trong ∆ADF và ∆BCE,

AD = BC (∴ABCD là hình bình hành ∴ AD = BC)

AF = BE (∴ABEF là hình bình hành ∴AF = BE)

∠ADF = ∠BCE (Góc tương ứng)

∠AFD = ∠BEC (Góc tương ứng)

∠DAF = ∠CBE (Thuộc tính tổng góc)

∆ADE ≅ ∆BCF (Theo quy tắc SAS)

Diện tích (ADF) = Diện tích (BCE) (Theo tiên đề vùng đồng dư)

Diện tích (ABCD) = Diện tích (ABED) + Diện tích (BCE)

Diện tích (ABCD) = Diện tích (ABED) + Diện tích (ADF)

Diện tích (ABCD) = Diện tích (ABEF)

Do đó, diện tích các hình bình hành trên cùng đáy và giữa các cạnh đối song song bằng nhau.

Hệ quả

Một hình bình hành và một hình chữ nhật trên cùng một đáy và giữa các cạnh giống nhau thì có diện tích bằng nhau.

Chứng minh:  Vì hình chữ nhật cũng là hình bình hành nên kết quả là hệ quả trực tiếp của định lý trên.

Định lý:  Diện tích hình bình hành là tích của đáy và đường cao tương ứng.

Cho:  Trong hình bình hành ABCD có AB là đáy.

Để chứng minh  rằng Diện tích (|| gm ABCD) = AB × AL

Cách dựng:  Hoàn thành hình chữ nhật ALMB bằng cách Vẽ BM vuông góc với CD.

Hình bình hành 4

Sự khác biệt giữa Hình bình hành và Hình thoi

Hình bình hành Hình thoi
Một tứ giác có các cạnh đối diện bằng nhau và song song Một tứ giác có tất cả các cạnh của nó đồng dạng
Các đường chéo phân đôi nhau Các đường chéo phân đôi nhau 90 độ
Các góc đối diện có số đo bằng nhau Cả bốn góc đều có số đo bằng nhau

Các ví dụ đã giải quyết

Ví dụ- Tìm diện tích của một hình bình hành có đáy là 5 cm và chiều cao là 8 cm.

Lời giải- Cho, Căn = 5 cm và Chiều cao = 8 cm.

Chúng tôi biết, Diện tích = Cơ sở x Chiều cao

Diện tích = 5 × 8 

Diện tích =  40 Sq.cm

Ví dụ: Tìm diện tích hình bình hành có độ dài các đường chéo là 10, 22 cm và góc giao nhau là 65 độ.

Giải: Ta biết rằng các đường chéo của một hình bình hành là phân giác của nhau. Do đó, độ dài của một nửa đường chéo sẽ là 5 và 11 cm.

Hình bình hành 5

Góc đối diện với cạnh b là 180 – 65 = 115 °

Chúng ta sử dụng định luật cosin để tính cơ sở của hình bình hành –

b² = 5² + 11² – 2 (11) (5) cos (115 °)

b² = 25 + 121 – 110 (-0,422)

b² = 192,48

b = 13,87 cm.

Hình bình hành 6

Sau khi tìm được đáy, ta cần tính chiều cao của hình bình hành đã cho.

Để tìm chiều cao, chúng ta phải tính giá trị của θ, vì vậy chúng ta sử dụng định luật sin

5 / sin (θ) = b / sin (115)
θ = 19,06

Hình bình hành 7

Bây giờ chúng ta mở rộng cơ sở và vẽ chiều cao của hình và ký hiệu nó là ‘h’.

Tam giác vuông cân (được đánh dấu bằng đường kẻ đỏ) có hoành độ là 22 cm và vuông góc là h.

Vì thế

sin θ = h / 22

h = 7,184 cm

Diện tích = cơ sở × chiều cao

A = 13,87 × 7,184

A = 99,645 sq.cm

Câu hỏi thường gặp – Câu hỏi thường gặp

Hình bình hành là gì?

Hình bình hành là tứ giác có các cạnh đối diện song song và bằng nhau. Nó có các góc đối diện bên trong của nó bằng nhau. Ngoài ra, các góc ở cùng một phía của phương ngang tổng lên đến 180 độ hoặc bổ sung cho nhau.

Nêu các ví dụ về hình bình hành?

Hình bình hành là tứ giác có hai cặp cạnh đối song song và đồng dạng. Ngoài ra, các góc đối diện là đồng dư. Các ví dụ về các hình có cùng tính chất là: Hình thoi Hình
vuông
Hình
thoi Hình vuông
và hình thang không thể được coi là hình bình hành vì chúng không có hai cặp cạnh đối song song.

Diện tích và chu vi hình bình hành là bao nhiêu?

Diện tích của một hình bình hành là vùng chiếm bởi nó trong một mặt phẳng hai chiều. Công thức của nó là:
Diện tích = Căn x Chiều cao (tính theo đơn vị bình phương)
Diện tích hình bình hành không có chiều cao được cho bởi:
Diện tích = ab sin x
Trong đó a và b là hai cạnh kề của hình bình hành và x là góc giữa chúng.
Chu vi là tổng độ dài các đường biên của một hình bình hành. Nó bằng tổng của cả bốn cạnh.
Chu vi = 2 (a + b)

Hình bình hành là hình gì?

Hình bình hành là hình có bốn cạnh hai chiều, có hai cặp cạnh song song và bằng nhau.

Bốn tính chất quan trọng của hình bình hành là gì?

Các cạnh đối song song và đồng dạng Các
góc đối diện là đồng dạng
Các góc liên tiếp là phụ nhau Các
đường chéo phân giác nhau
0 0 votes
Article Rating
Theo dõi
Thông báo của
guest
0 Comments
Inline Feedbacks
View all comments

Khoa Y Dược Hà Nội tuyển sinh chính quy

GIẢI TOÁN ONLINE SIÊU NHANH VÀ CHÍNH XÁC NHẤT

Bài viết mới nhất

Thi trắc nghiệm online
https://tintuctuyensinh.vn/wp-content/uploads/2021/10/Autumn-Sale-Facebook-Event-Cover-Template-1.png
0
Would love your thoughts, please comment.x
()
x