Cổng Thông Tin Đại Học, Cao Đẳng Lớn Nhất Việt Nam

Tính toán đa thức: Cách tính thừa số là gì? Xem xong hiểu luôn.

KHOA Y DƯỢC HÀ NỘI

Thẳng tiến vào đại học chỉ với: Điểm lớp 12 Từ 6,5 Điểm thi từ 18

  • Để đảm bảo chất lượng học và dạy cũng như chất lượng đầu ra cho sinh viên, năm 2021 Khoa nhận đào tạo 200 sinh viên đối với ngành Đại Học Điều DưỡngDược tuyển sinh theo hình thức xét tuyển.
  • HOẶC NỘP HỒ SƠ TRỰC TUYẾN TẠI ĐÂY >>>  CLICK VÀO ĐÂY 
Tính nhân tử của đa thức là quy trình ngược lại của phép nhân thừa số của đa thức. Biểu thức có dạng ax n + bx n-1 + kcx n-2 +…. + Kx + l, trong đó mỗi biến có một hằng số đi kèm như hệ số của nó được gọi là đa thức bậc ‘n’ trong biến x. Như vậy, đa thức là một biểu thức trong đó tổ hợp của một hằng số và một biến số được phân tách bằng một phép cộng hoặc một dấu trừ.

  • Rễ của đa thức
  • Nhân đa thức
  • Zeros của đa thức
  • Đa thức lớp 9
  • Đa thức cho lớp 10

Các số 0 của đa thức, khi được biểu diễn dưới dạng một đa thức tuyến tính khác được gọi là nhân tử của đa thức . Sau khi phân tích nhân tử của một đa thức đã cho, nếu chúng ta chia đa thức với bất kỳ nhân tử nào của nó thì phần dư sẽ bằng không. Ngoài ra, trong quá trình này, chúng tôi nhân tử của đa thức bằng cách tìm nhân tử chung lớn nhất của nó. Bây giờ chúng ta hãy tìm hiểu cách phân tích nhân tử của đa thức ở đây với các ví dụ.

Thừa số của đa thức

Quá trình tìm kiếm thừa số của một giá trị nhất định hoặc biểu thức toán học được gọi là thừa số. Thừa số là các số nguyên được nhân để tạo ra một số ban đầu. Ví dụ, các thừa số của 18 là 2, 3, 6, 9 và 18, chẳng hạn như;

18 = 2 x 9

18 = 2 x 3 x 3

18 = 3 x 6

Tương tự, trong trường hợp đa thức, nhân tử là đa thức được nhân để tạo ra đa thức ban đầu. Ví dụ, thừa số của x 2 + 5x + 6 là (x + 2) (x + 3). Khi chúng ta nhân cả x +2 và x + 3, thì đa thức ban đầu được tạo ra. Sau khi phân tích nhân tử, chúng ta cũng có thể tìm thấy các số không của đa thức. Trong trường hợp này, các số 0 là x = -2 và x = -3.

Các loại đa thức tính toán

Có sáu phương pháp khác nhau để phân tích nhân tử của đa thức. Sáu phương pháp như sau:

  • Yếu tố chung lớn nhất (GCF)
  • Phương pháp phân nhóm
  • Tổng hoặc hiệu của hai khối
  • Sự khác biệt trong phương pháp hai bình phương
  • Tam thức tổng quát
  • Phương pháp tam thức

Trong bài viết này, chúng ta hãy thảo luận về hai phương pháp cơ bản mà chúng ta đang sử dụng thường xuyên để phân tích nhân tử của đa thức. Hai phương pháp đó là phương pháp nhân tử chung lớn nhất và phương pháp phân nhóm. Ngoài các phương pháp này, chúng ta có thể xác định nhân tử của các đa thức bằng cách sử dụng các đồng nhất đại số tổng quát . Tương tự, nếu đa thức là một biểu thức bậc hai, chúng ta có thể sử dụng phương trình bậc hai để tìm nghiệm / nhân tử của một biểu thức đã cho. Công thức tìm thừa số của biểu thức bậc hai (ax 2 + bx + c) được cho bởi:

=– ±b2– ca

Làm thế nào để giải quyết đa thức?

Có một số phương pháp nhất định mà chúng ta có thể giải các đa thức. Hãy để chúng tôi thảo luận về các phương pháp này.

Yếu tố chung lớn nhất

Chúng ta phải tìm ra nhân tử chung lớn nhất của đa thức đã cho để tính nhân tử của nó. Quy trình này không là gì ngoài một loại quy trình ngược lại của luật phân phối, chẳng hạn như;

p (q + r) = pq + pr

Nhưng trong trường hợp phân tích nhân tử, nó chỉ là một quá trình nghịch đảo;

pq + pr = p (q + r)

trong đó p là nhân tử chung lớn nhất.

Tính toán đa thức bằng cách nhóm

Phương pháp này cũng được cho là bao thanh toán theo cặp. Ở đây, đa thức đã cho được phân phối theo cặp hoặc được nhóm lại theo cặp để tìm các số không. Chúng ta hãy lấy một ví dụ.

Ví dụ: Factorise x 2 -15x + 50

Tìm hai số mà khi thêm vào cho -15 và khi nhân với 50.

Vì vậy, -5 và -10 là hai số, sao cho;

(-5) + (-10) = -15

(-5) x (-10) = 50

Do đó, chúng ta có thể viết đa thức đã cho dưới dạng;

2 -5x-10x + 50

x (x-5) -10 (x-5)

Lấy x – 5 làm thừa số chung ta được;

(x-5) (x-10)

Do đó, các thừa số là (x – 5) và (x – 10).

Bao thanh toán bằng cách sử dụng danh tính

Việc phân tích nhân tử cũng có thể được thực hiện bằng cách sử dụng các định danh đại số. Các đặc điểm nhận dạng phổ biến nhất được sử dụng để phân tích nhân tử là:

  • (a + b) 2  = a 2  + 2ab + b 2
  • (a – b) 2  = a 2  – 2ab + b 2
  • 2  – b 2 = (a + b) (a – b)

Factorise (x 2 – 11 2 )

Sử dụng đồng dạng, chúng ta có thể viết đa thức trên dưới dạng;

(x + 11) (x-11)

Định lý thừa số

Đối với đa thức p (x) có bậc lớn hơn hoặc bằng một,

  1. xa là một thừa số của p (x), nếu p (a) = 0
  2. Nếu p (a) = 0, thì xa là một thừa số của p (x)

Trong đó ‘a’ là một số thực.

Tìm hiểu thêm tại đây: Định lý thừa số

Tính đa thức với bốn thuật ngữ

Hãy để chúng tôi tìm hiểu làm thế nào để nhân tử của đa thức có bốn số hạng. Ví dụ, x 3 + x 2 – x – 1 là đa thức. 

Trước hết hãy chia đa thức đã cho thành hai phần.

(x 3 + x 2 ) + (–x – 1)

Bây giờ, hãy tìm hệ số chung cao nhất từ ​​cả hai phần và lấy hệ số đó ra khỏi dấu ngoặc. 

Chúng ta có thể thấy, từ phần thứ nhất, x là nhân tử chung lớn nhất và từ phần thứ hai, chúng ta có thể lấy ra dấu trừ. Vì vậy,

2 (x + 1) -1 (x + 1)

Một lần nữa, tập hợp các thuật ngữ lại thành các yếu tố.

(x 2 -1) (x + 1) Do đó, thừa số của x 3 + x 2 – x – 1 cho (x 2 -1) (x + 1)

Các ví dụ đã giải quyết

Câu hỏi 1:

Kiểm tra xem x + 3 có phải là nhân tử của x 3 + 3x 2 + 5x +15 hay không.

Giải pháp:

Cho x + 3 = 0

=> x = -3

Bây giờ, p (x) = x 3 + 3x 2 + 5x +15

Hãy để chúng tôi kiểm tra giá trị của đa thức này cho x = -3.

p (-3) = (-3) 3 + 3 (-3) 2 + 5 (-3) + 15 = -27 + 27 – 15 + 15 = 0

Theo p (-3) = 0, x + 3 là nhân tử của x 3 + 3x 2 + 5x +15.

Bao thanh toán bằng cách chia nhỏ kỳ hạn giữa

Câu hỏi 2:

Thừa số x 2 + 5x + 6.

Giải pháp:

Chúng ta hãy thử phân thức nhân tử này bằng cách sử dụng phương pháp tách số hạng giữa.

Tính toán các đa thức bằng cách tách số hạng giữa:

Trong kỹ thuật này, chúng ta cần tìm hai số ‘a’ và ‘b’ sao cho a + b = 5 và ab = 6.

Khi giải điều này, chúng ta thu được, a = 3 và b = 2

Do đó, biểu thức trên có thể được viết dưới dạng:

2 + 3x + 2x + 6 = x (x + 3) + 2 (x + 3) = (x + 3) (x + 2)

Như vậy, x + 3 và x + 2 là nhân tử của đa thức x 2 + 5x + 6.

Câu hỏi thường gặp – Câu hỏi thường gặp

Đa thức tính thừa là gì?

Tính nhân tử của một đa thức là phương pháp chia đa thức thành một tích của các nhân tử của nó. Ví dụ, x 2 – 16 có thể được tính là (x + 4) (x-4).

Làm thế nào để nhân tử một đa thức?

Một đa thức có thể được nhân tử bằng các phương pháp khác nhau như tìm nhân tử chung lớn nhất của tất cả các số hạng, tách đa thức thành hai phần, sử dụng đồng nhất đại số, v.v.

Bốn loại bao thanh toán chính là gì?

Bốn loại bao thanh toán chính là Nhân tử chung lớn nhất (GCF), phương pháp Phân nhóm, hiệu số hai bình phương và tổng hoặc hiệu số lập phương.

Làm thế nào để nhân tử một đa thức với hai số hạng?

Để phân thức nhân tử với hai số hạng, hãy tìm GCF của các số hạng và lấy nhân tử chung ra. Ví dụ, x 2 – x là đa thức, x là GCF của x 2 và x, do đó,
2 – x = x (x-1)
Như vậy, x và x-1 là các thừa số của x 2 – x.

Làm thế nào để phân biệt nhân tử với ba số hạng? Đưa ra ví dụ.

Giả sử, x 2 – 7x -18 là một đa thức có ba số hạng. Bây giờ chúng ta cần tìm hai số như vậy mà tích sẽ cho 18 và tổng sẽ cho 7. Như vậy,
9 x 2 = -18
9 + 2 = -7
Do đó, chúng ta có thể viết đa thức đã cho là;
2 – (9 + 2) x – (9 x 2 )
Do đó, các hệ số bắt buộc là:
(x-9) (x + 2)
0 0 votes
Article Rating
Theo dõi
Thông báo của
guest
0 Comments
Inline Feedbacks
View all comments

Khoa Y Dược Hà Nội tuyển sinh chính quy

GIẢI TOÁN ONLINE SIÊU NHANH VÀ CHÍNH XÁC NHẤT

Bài viết mới nhất

Thi trắc nghiệm online
https://tintuctuyensinh.vn/wp-content/uploads/2021/10/Autumn-Sale-Facebook-Event-Cover-Template-1.png
0
Would love your thoughts, please comment.x
()
x