Cổng Thông Tin Đại Học, Cao Đẳng Lớn Nhất Việt Nam

Định nghĩa Tâm – Định lý Tâm – Công thức Tâm Từ A đến Z

KHOA Y DƯỢC HÀ NỘI

Thẳng tiến vào đại học chỉ với: Điểm lớp 12 Từ 6,5 Điểm thi từ 18

  • Để đảm bảo chất lượng học và dạy cũng như chất lượng đầu ra cho sinh viên, năm 2021 Khoa nhận đào tạo 200 sinh viên đối với ngành Đại Học Điều DưỡngDược tuyển sinh theo hình thức xét tuyển.
  • HOẶC NỘP HỒ SƠ TRỰC TUYẾN TẠI ĐÂY >>>  CLICK VÀO ĐÂY 
Trong Hình học, trọng tâm là một khái niệm quan trọng liên quan đến hình tam giác. Hình tam giác là một hình có ba cạnh với ba góc bên trong. Dựa trên các cạnh và các góc, một tam giác có thể được phân loại thành nhiều loại khác nhau như

  • Tam giác Scalene
  • Tam giác cân
  • Tam giác đều
  • Hình tam giác có góc nhọn
  • Hình tam giác có góc xiên
  • Tam giác vuông góc

Trọng tâm là một tính chất quan trọng của một tam giác. Hãy để chúng tôi thảo luận về định nghĩa của centroid, công thức, thuộc tính và centroid cho các hình dạng hình học khác nhau một cách chi tiết.

Định nghĩa Tâm

Tâm là điểm chính giữa của vật thể. Điểm mà ba trung tuyến của tam giác cắt nhau được gọi là trọng tâm của tam giác . Nó cũng được xác định là giao điểm của cả ba trung tuyến. Đường trung tuyến là đoạn thẳng nối trung điểm của một cạnh và đỉnh đối diện của tam giác. Trọng tâm của tam giác chia cắt đường trung tuyến theo tỷ lệ 2: 1. Có thể tìm được bằng cách lấy trung bình cộng của các điểm tọa độ x và các điểm tọa độ y của tất cả các đỉnh của tam giác.

Định lý Tâm

Định lý Tâm phát biểu rằng trọng tâm của tam giác nằm bằng 2/3 khoảng cách từ đỉnh đến trung điểm của các cạnh.

Giả sử PQR là tam giác có trọng tâm là V. S, T và U lần lượt là trung điểm các cạnh của tam giác PQ, QR và PR. Do đó theo định lý;

QV = 2/3 QU, PV = 2/3 PT và RV = 2/3 RS

Tâm của một tam giác góc phải

Trọng tâm của một tam giác vuông là giao điểm của ba trung tuyến, được vẽ từ các đỉnh của tam giác đến trung điểm của các cạnh đối diện.

Tâm của một tam giác vuông

Centroid of a Square

Điểm mà các đường chéo của hình vuông cắt nhau là tâm của hình vuông. Như chúng ta đã biết, hình vuông có tất cả các cạnh của nó bằng nhau. Do đó, rất dễ dàng để xác định vị trí trung tâm trong đó. Xem hình bên dưới, trong đó O là tâm của hình vuông.

Centroid của một hình vuông

Ngoài ra, hãy đọc:

  • Công thức Centroid cho hình tam giác
  • Centroid của một công thức hình thang
  • Orthocenter
  • Trung tâm của một tam giác

Thuộc tính của Tâm

Các thuộc tính của Tâm như sau:

  • Centroid là tâm của vật thể.
  • Nó là tâm của trọng lực.
  • Nó phải luôn luôn nằm bên trong đối tượng.
  • Nó là điểm đồng thời của các phương tiện truyền thông.

Công thức Tâm

Hãy xem xét một tam giác. Nếu ba đỉnh của tam giác là A (x 1 , y 1 ), B (x 2 , y 2 ), C (x 3 , y 3 ) thì trọng tâm của tam giác có thể được tính bằng cách lấy trung bình cộng của X. và Y tọa độ điểm của cả ba đỉnh. Do đó, trọng tâm của một tam giác có thể được viết là:

Tâm của tam giác = ((x 1 + x 2 + x 3 ) / 3, (y 1 + y 2 + y 3 ) / 3)

Centroid của một tam giác

Công thức Tâm cho các hình dạng khác nhau

Ở đây, danh sách công thức centroid được đưa ra cho các hình dạng hình học khác nhau.

Hình dạng Nhân vật NS ȳ Khu vực
Khu tam giác Khu tam giác h / 3 bh / 2
Diện tích hình tròn Diện tích hình tròn 4r / 3π 4r / 3π πr 2 /4
Vùng bán nguyệt Vùng bán nguyệt 0 4r / 3π πr 2 /2
Diện tích hình elip Diện tích hình elip 4a / 3π 4b / 3π πab / 4
Vùng bán elip Vùng bán elip 0 4b / 3π πab / 2
Khu vực bán đồng hóa Khu vực bán đồng hóa 3a / 8 3h / 5 2ah / 3
Khu vực hình parabol Khu vực hình parabol 0 3h / 5 4ah / 3
Spandrel parabol Spandrel parabol 3a / 4 3h / 10 à / 3

Ví dụ về tính toán Tâm

Tìm các ví dụ đã giải dưới đây, để tìm trọng tâm của tam giác với các giá trị đỉnh đã cho.

Câu 1: Tìm trọng tâm của tam giác có các đỉnh là A (2, 6), B (4, 9) và C (6,15).

Dung dịch:

Được cho:

A (x 1 , y 1 ) = A (2, 6)

B (x 2 , y 2 ) = B (4,9)

C (x 3 , y 3 ) = C (6,15)

Chúng ta biết rằng công thức tìm trọng tâm của tam giác là = ((x 1 + x 2 + x 3 ) / 3, (y 1 + y 2 + y 3 ) / 3)

Bây giờ, thay thế các giá trị đã cho trong công thức

Tâm của tam giác = ((2 + 4 + 6) / 3, (6 + 9 + 15) / 3)

= (12/3, 30/3)

= (4, 10)

Do đó, trọng tâm của tam giác đối với các đỉnh A (2, 6), B (4,9) và C (6,15) đã cho là (4, 10).

Câu 2: Tìm trọng tâm của tam giác có các đỉnh là A (1, 5), B (2, 6) và C (4, 10).

Giải: Cho, A (1, 5), B (2, 6) và C (4, 10) là các đỉnh của tam giác ABC.

Bằng công thức của centroid mà chúng ta biết;

Centroid = ((x 1 + x 2 + x 3 ) / 3, (y 1 + y 2 + y 3 ) / 3)

Đặt các giá trị, chúng tôi nhận được;

Centroid = (1 + 2 + 4) / 3, (5 + 6 + 10) / 3

= (7/3, 21/3)

= (7 / 3,7)

Do đó, trọng tâm của tam giác có các đỉnh A (1, 5), B (2, 6) và C (4, 10) là (7/3, 7).

Câu 3: Nêu các đỉnh của tam giác PQR là (2, 1), (3, 2) và (-2, 4). Sau đó, tìm trọng tâm của nó.

Giải: Cho (2, 1), (3, 2) và (-2, 4) là các đỉnh của tam giác pQR.

Bằng công thức của centroid mà chúng ta biết;

Centroid = ((x 1 + x 2 + x 3 ) / 3, (y 1 + y 2 + y 3 ) / 3)

Đặt các giá trị, chúng tôi nhận được;

Centroid, O = (2 + 3-2) / 3, (1 + 2 + 4) / 3

O = (3/3, 7/3)

O = (1, 7/3)

Do đó, trọng tâm của tam giác có các đỉnh (2, 1), (3, 2) và (-2, 4) là (1, 7/3).

0 0 votes
Article Rating
Theo dõi
Thông báo của
guest
0 Comments
Inline Feedbacks
View all comments

Khoa Y Dược Hà Nội tuyển sinh chính quy

GIẢI TOÁN ONLINE SIÊU NHANH VÀ CHÍNH XÁC NHẤT

Bài viết mới nhất

Thi trắc nghiệm online
https://tintuctuyensinh.vn/wp-content/uploads/2021/10/Autumn-Sale-Facebook-Event-Cover-Template-1.png
0
Would love your thoughts, please comment.x
()
x